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Real-time implementations of damped, second-order systems are examined in terms of
stability of the discrete realizations.  In this analysis the required double integration is
separated, because nonlinearities are assumed to accompany the outputs of each discrete
integration algorithm.  For example, “anti-windup” limiters may be assumed in a control
system application, as shown in the Laplace representation given by Fig. 1.
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Fig. 1 - Laplace Representation

If the discrete implementation of a second order system is to be stable, it must be stable in
linear regions, when nonlinearities are not encountered.  For this reason, the linear discrete
system is analyzed.  In the case of limiters, the phenomenon of encountering a nonlinearity
on either integration reduces the order of the system, and this implies stability if the discrete
implementation of the second-order system is stable.  The entrance to, and exit from
nonlinear regions constitute boundary value problems.

The stability of a discrete implementation depends on the system parameters, and on the
selected integration algorithms.  In this analysis, the maximum possible cycle time h  is
determined for each algorithm, as required to maintain stability in the discrete
implementation.  A particular high frequency system (called the “target system”) is
periodically mentioned, where the natural frequencyωn  is given as 75 rad/sec, the damping
is ζ = 0.7 , and the cycle time h   =0.025 seconds.  For this taxing discrete model, where
the duty cycle ωnh = 1.875, it is shown that     none    of the discrete algorithms are capable of
producing a stable discrete realization.

The linear, conventional second order system representing the linear form of Fig. 1 may be
diagrammed in z-transform space using symbolic integration operators as follows:
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Fig. 2 - Linear, Discrete Representation

The Algorithms

In order to recursively solve the differential equation representing the second-order system,
the acceleration ˙̇yk  is computed from the current input xk , and the states yk  and ẏk  which
have been predicted from the preceding recursion.

˙̇ ˙y x y yk n n n k n k= − −ω ζω ω2 22

Any mixed combination of subscripts in this equation produces an erroneous mathematical
statement.  From the acceleration (and possibly using the previous value of the acceleration
˙̇yk −1), five different algorithmic combinations are selected in this analysis.  The individual
integration algorithms considered are (1) Euler, an explicit algorithm which is called
Rectangular in its implicit form, (2) Adams-Bashforth 2nd, which is an explicit algorithm,
and (3) Trapezoidal, which is an implicit algorithm, but also used as an explicit form herein
when required to satisfy the recursion.  These algorithms pretty much exhaust the
possibilities for real time simulation work, which requires low-order, causal algorithms.
The combinations selected are assumed to (1) advance the time index of the velocity, and
(2) create the advanced position from this velocity.  These combinations are:

(1) ET - The Euler algorithm to create the velocity from the acceleration, known to
advance the time index by only half a time step ( h ), followed by the Trapezoidal (or
Tustin, or Triangular, or Adams-Moulton 2nd order) algorithm, known to preserve the
time index, to create the position from the velocity.

(2) ER - The Euler algorithm (explicit) to create the velocity from the acceleration,
followed by the Rectangular algorithm (implicit) to create the position from the
velocity.  In this algorithmic combination the velocity tends to be advanced a half time
step, and the position then tends to be advanced by the full time step.

(3)  TT - The Trapezoidal algorithm in an advancing form to create the velocity from the
acceleration, followed by the Trapezoidal algorithm to create the position from the
velocity.  This sequence is what Engineers get when they insist on using the Tustin
algorithm for both integrations.

 (4) AT - The Adams-Bashforth 2nd order integration (explicit) algorithm to create the
velocity from the acceleration, followed by the Trapezoidal algorithm (implicit).  In
this algorithmic combination, widely used at Ames Research Center’s simulation
facilities for low frequency aircraft states, the velocity tends to be advanced a full time
step, and the position is then concurrent with the velocity.
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(5) AR - The Adams-Bashforth 2nd order integration (explicit) algorithm to create the
velocity from acceleration, followed by the Rectangular algorithm (implicit).  In this
algorithmic combination the velocity tends to be advanced a full time step, and the
position tends to be advanced an additional half time step.

The time shifts inherent in the individual integration algorithms, as mentioned above, are
modified in the discrete implementation as a function of the feedback terms.  This complex
interaction influences the stability of the discrete system, and none of the combinations can
uniformly advance the states of the system over the entire range of frequencies.  Dependent
upon the system parameters, some algorithms have better performance than others.

Analysis Relationships

The position output of the second-order discrete system is related to its input by the closed-
loop system function of Fig. 2,
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and this representation reveals the open-loop system (by breaking the feedback path),

H z F z G z I z I zn v n p( ) = ( ) ( ) = ( ) + ( )[ ]ω ζ ω2

which is used to determine stability properties.  The gain and phase of the open-loop
system will be displayed, as a function of the various integration algorithms.  

For the display of time responses, the velocity of the closed-loop system is used:
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The time response of the velocity of the closed-loop system displays stability problems
more readily than does the position.  Indeed, for some algorithms, short time-period
observations of just the position response conceals the fact that the velocity may be
divergent.  Note that the open-loop system is identical for both position and velocity, so the
frequency-domain stability analysis is robust.  For the target system, the desired closed-
loop time response of the velocity to a unit step input is given in Fig. 3.
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Fig. 3 - Desired Velocity Response

In order to examine the stability of the discrete second order system, the open loop transfer
function is evaluated at the phase crossover frequency, defined as the point where the phase
angle of H z( ) is −π .  At this point the gain margin is defined as:

gain margin =   when H z z( ) ( ) = −−1 φ π

If the gain margin is less than or equal to unity, the system is unstable.  This also means
that H z( ) is outside the unit circle.  The phase margin is defined as how much the phase is
above −π  when the gain margin is unity.  If the phase margin is not above this value, then
the system is also unstable.

Note that the closed-loop Laplace function,
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produces the open-loop Laplace function,

h s
s s

n n( ) = +
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with phase angle given by,

φ ζω
ω

=
−







−tan 1 2

n

such that the initial phase angle (as ω → 0 ) begins its response in frequency space at the
value of −π .  Phase angles produced in the material given below using z-transforms are
adjusted to reflect this fact.

For the “target system” the desired gain and phase of the open-loop system h s( )  are shown
in Figs. 4(a) and 4(b).
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Fig. 4 - Desired Open-Loop Performance

For comparison purposes, these curves are reiterated on other performance figures.  The
five different algorithmic combinations are analyzed in Appendices A through E.

Analysis Results

As a function of the system damping, the algorithmic combinations produce the following
results in terms of stable discrete processes.  The required duty cycle ωnh is produced as a
function of the system damping.
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Algorithm  Program Sequence Damping For Stability

ET
˙ ˙ ˙̇y y hyk k k+ = +1 ζ < 1 2 ω ζnh < 4

y y y yk k
h

k k+ += + +( )1 2 1˙ ˙ ζ ≥ 1 2 ω ζnh < 1

ER
˙ ˙ ˙̇y y hyk k k+ = +1

All ω ζ ζnh < + −( )2 1 2

y y hyk k k+ += +1 1˙

TT
˙ ˙ ˙̇ ˙̇y y y yk k

h
k k+ −= + +( )1 2 1 All ω ζ ζ ζnh < + − +( )1 2 1 42 4

y y y yk k
h

k k+ += + +( )1 2 1˙ ˙

AT
˙ ˙ ˙̇ ˙̇y y y yk k

h
k k+ −= + −( )1 2 13 ζ < 1 12 See Footnote1

y y y yk k
h

k k+ += + +( )1 2 1˙ ˙ ζ ≥ 1 12 ω ζnh < ( )1 2

AR
˙ ˙ ˙̇ ˙̇y y y yk k

h
k k+ −= + −( )1 2 13

All ω ζ ζnh < + −( )2 2 1
2

y y hyk k k+ += +1 1˙

Table I - Stability Analysis Results

This material is also presented in graphical form in Fig. 5.  For each of the integration
combinations, the discrete model is unstable if the duty cycle is above the pertinent curve.  
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For the target system, where ωnh = 1 875.  and ζ = 0 7. ,     none    of the algorithms produces
stability.  For this system, where ωn = 75 rad/sec, the maximum possible cycle time is
given in Fig. 6.
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Fig. 6 - Target System Maximum Cycle Time

For stability using the target system, the maximum cycle times are presented in Table II.

Algorithm Maximum h - sec
ET 0.01905
ER 0.01388
TT 0.01104
AT 0.00952
AR 0.00787

Table II - “Target System” Stability Limits
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From Table II we see that none of the algorithmic combinations are capable of solving the
target system.

Conclusions

Due to the stability boundaries developed here, the selection of an appropriate integration
sequence for a system with a high natural frequency requires a careful choice.  For
example, a “target system” (representing a real actuator problem) has recently been
presented to our simulation facility, and this system is too fast to be solved using an array
of possible algorithms.

Although it appears that a multi-rate procedure is the only solution to the target system
(with iaccompanying aliasing problems), a project has recently been completed where an
alternate algorithmic approach successfully solves the target system.  This technique will
soon be published.
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Appendix A

Euler-Trapezoidal (ET)

Using Euler integration for the acceleration-to-velocity integral followed by trapezoidal
integration for the velocity-to-position integral produces the following code fragment for a
second order system,
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˙ ˙
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which may be written in z-transform notation by,
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Hence, for the Euler-Trapezoidal set, the symbolic integrations are given by,
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The closed-loop system for the velocity is given in z-transform notation by,
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and in order to investigate the stability properties, we examine the open-loop function,
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As ω πh →  (the Nyquist frequency), the phase margin vanishes.  At this frequency, where
z = −1, the system magnitude is given by,

H hn−( ) =1 ζω

The system is unstable if H z( ) > 1 (outside the unit circle).  Thus for stability the cycle
time must conform to the inequality,

h
n

< 1
ζω

Also, if 4ζ ω< nh , then φ π≤ −  , and the system is unstable.

For a stable system we thus have 1 > ζωnh , and if 4ζ ω< nh , the combination of these
inequalities produces ζ = 1 2.  Hence, in the region of lower damping, where 4ζ ω< nh ,
for stability the cycle time must conform to the inequality,

h
n

< 4ζ
ω

These two inequalities produce a piecewise continuous curve, where the smallest inequality
is required for stability.  For a stable Euler-Trapezoidal algorithm we thus have,

h n

n

<
<

≥
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Using the given damping and frequency parameters for the target system, the Euler-
Trapezoidal scheme is unstable for cycle times above 0.019 seconds.  At this cycle time,
the magnitude and phase are shown in Figs. A1(a) and A1(b).  Considerable deterioration
is shown in phase, as compared to the desired phase of Fig. 4(b).
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In Fig. A2 the velocity time response is shown to be just barely stable, and is a poor
representation of the desired response of Fig. 3.
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Fig. A2 - Target System Velocity, h = 0.019

By selecting a cycle time that is half of the maximum value, Fig. A3 is produced.  The
degradation in response is quite noticeable using the ET algorithm with a cycle time that is
half that required for stability.
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Appendix B

Euler-Rectangular (ER)

Using Euler integration for the acceleration-to-velocity integral followed by rectangular
integration for the velocity-to-position integral produces the following code fragment for a
second order system,

˙ ˙ ˙̇

˙

y y hy

y y hy
k k k

k k k

+

+ +

= +
= +

1

1 1

where the acceleration term is redundant with the previous case (ET), and is eliminated
from further consideration.  This fragment may be written in z-transform notation by,

˙ ˙̇

˙

y z
h

z
y z

y z
hz

z
y z

( ) =
−

( )

( ) =
−

( )

1

1

Hence for the Euler-Rectangular set the symbolic integrations are given by,
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p
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−

( ) =
−
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1

The closed-loop system for the velocity is given in z-transform notation by,

ẏ z

x z

h

z
h

z

h z

z

n

n n

( )
( )

= −
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−
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2 2
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and in order to investigate the stability properties, we examine the open-loop function,

H z
h

z

h z

z

h

z
h zn n n

n( ) =
−

+
−( )

=
−( )

+( ) −[ ]2
1 1 1

2 2
2 2

2 2

ζω ω ω ω ζ ζ

which has a phase angle given by,

φ ζ ω
ζ ω ω

π=
−( ) +









 −−tan

sin
cos

1 2
2 1

h

h hn

The phase margin vanishes when ω πh = .    At this frequency, where z = −1, the
magnitude  of the open-loop system is given by,
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H
h

hn
n−( ) = +( )1

4
4

ω ω ζ
and the gain margin is,

gain margin =
+( )

4
4ω ω ζn nh h

At the point of instability this is unity, such that

ω ζ ζnh = + −( )2 1 2

  Therefore, the cycle time must conform to the inequality,

h
n

<
+ −( )2 1 2ζ ζ

ω

Hence, using the given damping and frequency parameters of the target system, the Euler-
Rectangular scheme is unstable for cycle times above 0.0138 seconds.  At this cycle time,
the magnitude and phase are shown in Figs. B1(a) and B1(b).  Considerable deterioration
is shown in phase, as compared to the desired phase of Fig. 4(b).
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Fig. B1 - Target System Performance, h = 0.0138 sec

In Fig. B2 the velocity time response is shown to be just barely stable, and is a poor
representation of the desired response of Fig. 3.



14

40

0

-40

V
el

oc
ity

 R
es

po
ns

e

0.250.200.150.100.050.00

Time - sec

ER Algorithm, h = .0138 sec

Fig. B2 - Target System Velocity, h = 0.0138 sec

By selecting a cycle time that is half of the maximum value, Fig. B3 is produced.  The
response is not too bad using the ER algorithm with a cycle time that is half that required
for stability.
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Appendix C

Trapezoidal - Trapezoidal (TT)

Using advanced trapezoidal integration for the acceleration-to-velocity integral followed by
trapezoidal integration for the velocity-to-position integral produces the following code
fragment for a second order system,

˙ ˙ ˙̇ ˙̇

˙ ˙

y y y y

y y y y

k k
h

k k

k k
h

k k

+ −

+ +

= + +( )
= + +( )

1 2 1

1 2 1

Note that the first trapezoidal process must assume an advance (explicit integration).  Thus,
it is not strictly “trapezoidal integration,” but could possibly be called “advancing
trapezoidal”.  This fragment may be written in z-transform notation by,

˙ ˙̇

˙

y z
h z

z z
y z

y z
h z

z
y z

( ) = +( )
−( )

( )

( ) = +( )
−( )

( )

1
2 1

1
2 1

Hence, for the Trapezoidal-Trapezoidal set, the symbolic integrations are given by,

I z
h z

z z

I z
h z

z

v

p

( ) = +( )
−( )

( ) = +( )
−( )

1
2 1

1
2 1

The closed-loop system for the velocity is given in z-transform notation by,

ẏ z

x z

h z

z z
h z

z z

h z

z z

n

n n

( )
( )

=

+( )
−( )

+ +( )
−( )

+ +( )
−( )

ω

ζω ω

2

2 2 2

2

1
2 1

1
1

1
1

4 1

and in order to investigate the stability properties, we examine the open-loop function,

H z
h z

z z

h z

z z

h z

z z
h z hn n n

n n( ) = +( )
−( )

+ +( )
−( )

= +( )
−( )

+( ) + −[ ]ζω ω ω ω ζ ω ζ1
1

1
4 1

1
4 1

4 4
2 2 2

2 2

which has a phase angle given by,

φ
ω ω ω ζ ω

ω ζ ω ζ ω
π=

− + −( )[ ]
+( ) + −( )[ ]












−−tan

sin cos

cos cos
1

4

1 4 4

h h h h

h h h
n n

n

The phase margin vanishes when,
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cosω ω
ζ ω

h
h

h
n

n

=
−4

Substituting this into the expression for H z( ) =−1
1, which is the point at which the system

becomes unstable, produces,

ω ζ ζ ω ζn nh h2 2 2 22 1 2 4 0− +( ) + =

with solution,

ω
ζ ζ

ζnh =
+ − +1 2 1 42 4

producing a gain margin of,

gain margin =
+ − +1 2 1 42 4ζ ζ

ζωnh

At the point of instability this is unity.  Hence, the cycle time must conform to the
inequality,

h
n

<
+ − +1 2 1 42 4ζ ζ

ζω

Using the given damping and frequency parameters of the target system, the (advanced)
Trapezoidal-Trapezoidal scheme is unstable for cycle times above 0.011 seconds.  At this
cycle time, the magnitude and phase are shown in Figs. C1(a) and C1(b).  Considerable
deterioration is shown in phase, as compared to the desired phase of Fig. 4(b).
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Fig. C1 - Target System Performance, h = 0.011 sec

In Fig. C2 the velocity time response is shown to be just barely stable, and is a poor
representation of the desired response of Fig. 3.
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By selecting a cycle time that is half of the maximum value, Fig. C3 is produced.  The
response is still not very good using the TT algorithm with a cycle time that is half that
required for stability.
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Appendix D

Adams-Bashforth 2nd - Trapezoidal (AT)

Using the Adams-Bashforth 2nd order integration algorithm for the acceleration-to-velocity
integral followed by trapezoidal integration for the velocity-to-position integral produces the
following code fragment for a second order system,

˙ ˙ ˙̇ ˙̇

˙ ˙

y y y y

y y y y

k k
h

k k

k k
h

k k

+ −

+ +

= + −( )
= + +( )

1 2 1

1 2 1

3

which may be written in z-transform notation by,

˙ ˙̇

˙

y z
h z

z z
y z

y z
h z

z
y z

( ) = −( )
−( )

( )

( ) = +( )
−( )

( )

3 1
2 1

1
2 1

Hence for the Adams-Trapezoidal set the symbolic integrations are given by,

I z
h z

z z

I z
h z

z

v

p

( ) = −( )
−( )

( ) = +( )
−( )

3 1
2 1

1
2 1

The closed-loop velocity system is given in z-transform notation by,

ẏ z

x z

h z

z z
h z

z z

h z z

z z

n

n n

( )
( )

=

−( )
−( )

+ −( )
−( )

+ +( ) −( )
−( )

ω

ζω ω

2

2 2

2

3 1
2 1

1
3 1

1
1 3 1

4 1

and in order to investigate the stability properties, we examine the open-loop function,

H z
h z

z z

h z z

z z

h z

z z
h z hn n n

n n( ) = −( )
−( )

+ +( ) −( )
−( )

= −( )
−( )

+( ) + −[ ]ζω ω ω ω ζ ω ζ3 1
1

1 3 1
4 1

3 1
4 1

4 4
2 2

2 2

which has a phase angle given by,

φ
ω ζ ω ω ω

ζ ω ω ω ω
π

ω ζ ω ζ ω ω

ζ ω ω ζ ω

=
−( ) − −( )[ ]

−( ) − +( ) −( )








−

=
− − −( )[ ]

− + −( )





−

−

tan
sin cos cos

cos cos cos

tan
tan cos

cos

1
2

1

4 2 1

4 1 1 2

2
8 4

4 2 4

h h h h

h h h h

h
h h h

h h h

n

n

n n

n n

  













− π
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As ω πh →  (the Nyquist frequency) the phase margin vanishes.  At this frequency,
where z = −1, the system magnitude is given by,

H hn−( ) =1 2ζω

and the system is unstable if H z( )  is outside the unit circle.  Thus, for stability the cycle
time must conform to the inequality,

h
n

< 1
2ζω

The phase margin also vanishes if

cosω ζ ω
ζ ω

h
h

h
n

n

= −
−

8
4

From a consideration of the possible values of the cosine, this only occurs if,

ζ ω≤ nh

6

Hence if 6ζ ω≤ nh , the gain margin vanishes ( H z( ) > 1) beforeω πh → .  The magnitude
of the open-loop transfer function is given by,

H z
h z

z z
h z h

h

h
h h h h

n
n n

n
n n

( ) = −( )
−( )

+( ) + −[ ]

=
−( )

−( ) + + −( )[ ]

ω ω ζ ω ζ

ω
ω

ω ω ζ ω ζ ω

3 1
4 1

4 4

4 1
5 3 16 16

2

2 2 2 2 2 2        
cos

cos cos

and evaluating at the cosine value for zero phase margin,

H h
h

h

h h hn

n

n n ncosω ζ ω
ζ ω

ω ω ζ ω ζ
ζ

= −
−







=
−( ) +( )8

4

4 2

8

because 6ζ ω≤ nh .  Evaluating at the condition of equality, note that,

H h
h

n
nω ζ ω ζ=( ) ≥ =6
3

12
2 2

2

Hence, the additional limitation occurs at or below ζ = 1 12  (whereωnh = 3).  For
stability in this region we must have,

ζ
ω ω ω

ω
≥

+ + − −9 8 16 4

8

4 4 2 2 2 2
n n n

n

h h h

h
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These relationships produce a piecewise continuous curve, where the inequalities required
for a stable Adams-Trapezoidal algorithm are expressed in terms of the duty cycle:

ζ

ω ω ω
ω

ζ

ω
ζ

≥

+ + − −
<

≥










9 8 16 4

8
1 12

1
2

1 12

4 4 2 2 2 2
n n n

n

n

h h h

h

h

Hence, using the given damping and frequency parameters of the target system, the
Adams-Trapezoidal scheme is unstable for cycle times above 0.0095 seconds.  At this cycle
time, the magnitude and phase are shown in Figs. D1(a) and D1(b).  Considerable
deterioration is shown in phase, as compared to the desired phase of Fig. 4(b).
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Fig. D1 - Target System Performance, h = 0.0095 sec

In Fig. D2 the velocity time response is shown to be just barely stable, and is a poor
representation of the desired response of Fig. 3.
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Fig. D2 - Target System Velocity, h = 0.0095 sec

By selecting a cycle time that is half of the maximum value, Fig. D3 is produced.  The
response is fairly good using the AT algorithm with a cycle time that is half that required
for stability.
.
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Appendix E

Adams-Bashforth 2nd - Rectangular (AR)

Using the Adams-Bashforth 2nd order integration algorithm for the acceleration-to-velocity
integral followed by rectangular integration for the velocity-to-position integral produces
the following code fragment for a second order system,

˙ ˙ ˙̇ ˙̇

˙

y y y y

y y hy

k k
h

k k

k k k

+ −

+ +

= + −( )
= +

1 2 1

1 1

3

which may be written in z-transform notation by,

˙ ˙̇

˙

y z
h z

z z
y z

y z
hz

z
y z

( ) = −( )
−( )

( )

( ) =
−

( )

3 1
2 1

1

Hence for the Adams-Rectangular set the symbolic integrations are given by,

I z
h z

z z

I z
hz

z

v

p

( ) = −( )
−( )

( ) =
−

3 1
2 1

1

The closed-loop velocity system is given in z-transform notation by,

ẏ z

x z

h z

z z
h z

z z

h z z

z

n

n n

( )
( )

=

−( )
−( )

+ −( )
−( )

+ −( )
−( )

ω

ζω ω

2

2 2

2

3 1
2 1

1
3 1

1
3 1

2 1

and in order to investigate the stability properties, we examine the open-loop function,

H z
h z

z z

h z z

z z

h z

z z
h zn n n

n( ) = −( )
−( )

+ −( )
−( )

= −( )
−( )

+( ) −[ ]ζω ω ω ω ζ ζ3 1
1

3 1
2 1

3 1
2 1

2 2
2 2

2 2

which has a phase angle given by,

φ
ω ω ζ ω

ζ ω ω ω
π=

+ −( )[ ]
−( ) + −( )









−−tan
sin cos

cos cos
1

2

4 2

4 1 3

h h h

h h h
n

n

As ω πh →  (the Nyquist frequency), the phase margin vanishes.  At this frequency,
where z = −1, the system magnitude is given by,
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H
h

hn
n−( ) = +( )1

2
4

ω ω ζ

H z( ) =−1
1 is the point at which the system becomes unstable.  Evaluating at the point of

instability, this relationship produces the second order equation,

ω ζ ωn nh h( ) + ( ) − =2
4 2 0

which has only one positive solution.  Hence, for stability the cycle time must conform to
the following inequality,

h
n

<
+ −( )2 2 1

2ζ ζ

ω

Using the given damping and frequency parameters of the target system, the Adams-
Rectangular scheme is unstable for cycle times above 0.0078 seconds.

At this cycle time, the magnitude and phase are shown in Figs. E1(a) and E1(b).
Considerable deterioration is shown in phase, as compared to the desired phase of Fig.
4(b).
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Fig. E1 - Target System Performance, h = 0.0078 sec

In Fig. E2 the velocity time response is shown to be just barely stable, and is a poor
representation of the desired response of Fig. 3.
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Fig. E2 - Target System Velocity, h = 0.0078 sec

By selecting a cycle time that is half of the maximum value, Fig. E3 is produced.  The
response is pretty good using the ER algorithm with a cycle time that is half that required
for stability.
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Fig. E3 - Target System Velocity, h = 0.003935 sec


